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Abstract 

In recent years, production systems have become a popular framework within which 
to implement large-scale expert systems. Unfortunately, production systems are often 
characterized by slow running times, because of the large amount of matching that must 
be done during their execution. For the production system language OPS5, there is a 
highly efficient matching algorithm known as the Rete algorithm which gives a large 
speedup over a naive implementation of production systems. In this paper, we describe 
our attempts to speed up OPS5 even further by parallelizing the Rete algorithm in 
Qlisp, a parallel Lisp language. We give details on the Qlisp constructs we used to 
parallelize the Rete algorithm and provide actual timing results on various OPS5 rule 
sets. 

1    Introduction 

In recent years, production (rule) systems have become a popular framework within which to 
implement large-scale expert systems. They provide a means of organizing a large amount 
of expert knowledge in the form of a collection of rules, each of which encodes a small 
bit of expert knowledge about a situation. Such an organization, in which most of the 
knowledge is stored declaratively in the form of many loosely connected rules (rather than, 
for instance, procedurally in the control flow of a program), makes it easier to add knowledge 
incrementally to an existing knowledge base, either by modifying existing rules or adding 
new rules to the rule system. 

Unfortunately, production systems can run quite slowly, because of the large amount of 
matching needed to determine which particular rule applies at each stage in the execution 
of the system. Hence, any method of speeding up the matching process of rule systems 
is of great interest and utility. For a particular production system language, OPS5 [2], 
there is a highly efficient matching algorithm known as the Rete algorithm. However, 
even when this algorithm is used, a rule system with a fairly large number of rules may 
run unacceptably slowly. In this paper, we investigate parallelizing the Rete algorithm 
as a way to achieve greater execution speed for rule systems. In particular, we investigate 
parallelizing a Common Lisp implementation of the the Rete algorithm via the Qlisp parallel 



programming language. We base our work on the study by Gupta [6] of parallelism in the 
Rete algorithm. Additionally, Okuno and Gupta. [10] have previously done some work 
investigating the use of Qlisp to speed up OPS5. using a Qlisp simulator. 

Gupta et al. [7] describes the results of parallelizing an implementation of the Rete 
algorithm in C. Although a C implementation of the Rete algorithm is much faster than 
a Lisp implementation, it is interesting to speed up a Lisp implementation, because AI 
applications that use production systems are often built on top of Lisp. Additionally, the 
Rete algorithm provides an interesting "real-world" test case for Qlisp. since it is different in 
a number of ways, as will be described below, from the typical "toy'* benchmark programs 
that are often used to test parallel Lisps. > 

2    OPS5 

A production system consists of a collection of rules called productions and a working 
memory. Each production is specified by a set of conditions and a set of actions, such that 
the production is eligible to execute its actions ("fire*') when its conditions are satisfied. 
Working memory is a global database containing data elements which are referenced by 
the conditions of the productions and created, modified, and removed by the actions of the 
productions. A production system interpreter executes a set of productions by repeatedly 
executing a cycle which consists of the following phases: 

• match phase - determine all productions whose conditions are satisfied by' the current 
contents of working memory. 

• conflict resolution phase - choose a subset of the productions whose conditions are 
satisfied. 

• action phase - execute the actions of those productions, possibly changing the contents 
of working memory in the process. 

The set of all productions whose conditions are currently satisfied is called the conflict set. 
Thus, the second phase above consists of determining which of the productions currently in 
the conflict set should be executed. 

OPS5 is a production system language in which all working-memory elements (wme's) 
are vectors of symbols (or numbers). The individual components of a wme are referred 
to as the fields of the wme. Typically, the value of the first field of a wme is interpreted 
as the class of the wme and the value of the remaining fields as attributes of the wme. 
OPS5 allows the user to assign symbolic names to the fields of wme's of each class. Such 
attribute names are indicated by a preceding up-arrow. When an attribute name appears 
in a condition or wme, it indicates that the following value or pattern refers to the field 
corresponding to that attribute. For example, the notation: 

(goal "status active "type holds 'object ladder) 

indicates a wme with class name "goal'", a value of "active" for the "status" field, a value 
of "holds" for the "type" field, and a value of "ladder" for the "object" field. 

A typical OPS5 production is as follows: 



(p mb2 
(goal      "status active    "type holds    "object <w>) 
(object "name      <w> "at      <p> "on ceiling) 
(object "name      ladder    "at      <p>) 

--> 
(make goal "status active "type on "object ladder) 

) 

The symbols <w> and <p> are names of 0PS5 variables. A variable in a condition matches 
any value of the corresponding field. However, the variable is bound to the value it matches, 
and any other occurrence of the same variable within the conditions of the production 
matches only that value. Eachwme that matches the condition is said to be an instantiation 
of that condition. For example, a wme is an instantiation of the first condition of the above 
production if and only if it has a class name of "goal", a value of '"active" for the "status" 
field, and a value of "holds" for the ''type'* field. 

An instantiation of a production is a list of wme's such that each wme of the list is an 
instantiation of the corresponding condition of the production, and all occurrences of each 
variable throughout the conditions can be bound to the same value. A particular instantia- 
tion of a production chosen to fire during conflict resolution is executed by performing each 
of the actions of the production, after replacing any variables in the actions by the values 
to which they were bound in the instantiation. 

3    The Rete Algorithm 

For 0PS5, there exists an efficient serial algorithm, known as the Rete algorithm [1], for 
matching the conditions of the productions against working memory. The Rete algorithm 
builds a network representing the productions, called the Rete network, which is similar 
to a dataflow network. The Rete network takes advantage of two properties of production 
systems which allow for efficient matching: 

• The contents of the working memory change slowly. 

• There are many sequences of tests that are common to the conditions of more than 
one production. 

The Rete algorithm exploits the first property by storing match information in the network 
between cycles, so that it only matches a wme against each production condition once, even 
if (as is likely) the wme remains in working memory for many cycles. Because of the storing 
of match information in the network, only the changes to working memory, rather than the 
whole contents of working memory, need be processed during each cycle. Each time a wme 
is added to working memory, the wme is "filtered'' down the network, causing new partial 
matches to be recognized and recorded in the network and possibly causing one or more 
productions to be fully instantiated and placed in the conflict set. An identical process 
occurs when a wme is removed from memory, except that partial matches are discarded as 
the wme filters down the network. l 

This description is not completely accurate if any productions contain negated conditions, which "suc- 
ceed" only if they are not matched by any element in working memory. Such negated conditions merely add 
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Figure 1: Structure of a Simple Rete Network 

The Rete algorithm takes advantage of the second property by sharing common test and 
memory nodes as it adds nodes to the network to represent the conditions of each successive 
production. Because of the structure of the Rete network, the Rete algorithm can easily 
determine, as it is adding nodes to the network to represent a particular production, whether 
the nodes required already exist in the network and so can be reused. 

Information flows among the nodes of the Rete network in the form of tokens, which are 
ordered lists of wine's. A match to a list of conditions (e.g. the left side of a production) 
is represented by a token in which the first wme matches the first condition, the second 
wme matches the second condition, and so on. A token stored at a node in the network 
represents a successful instantiation of the list of conditions represented by the set of nodes 
leading into that node. 

The structure of a simple Rete network is displayed in Figure 1.  Each condition of a 

to the complexity of the Rete algorithm, without having a significant effect on the possibilities of parallelism, 
so we will not discuss them further. 



production is represented in the Rete network by a singly-linked list of nodes, called an 
alpha branch. These nodes, referred to as alpha nodes, execute the intra-condition tests, 
those tests which concern only the wme that the condition is matching. For example, the 
intra-condition tests of the third condition of the production above are (1) the class name 
must be "goal'" and (2) the '-name" field must have the value "ladder'". Each alpha branch 
is terminated by a memory node, called an alpha memory, in which is stored all tokens 
representing wme's that have satisfied all the tests of the alpha branch. Each alpha branch 
is linked to the root node of the network. 

The two alpha branches representing the first two conditions of a production are joined 
together by an and-node, which has the alpha memories of the two branches as "inputs". A 
beta memory node is linked to the and-node as its output, storing any tokens which leave 
the and-node. If there is a third condition in the production, the alpha memory representing 
that condition is joined by another and-node to the beta memory representing the first two 
conditions, and again a beta memory ^is linked as the output 'of the new and-node. Similarly, 
the alpha memory of each successive condition of the production is joined by an and-node 
to the beta memory representing all previous conditions. The memory node at the left 
input of an and-node always represents the first n conditions of a production, while the 
memory node at the right input represents the (n + l)st condition. If a token from the 
left and right memories of an and-node have the same values for fields labeled by the same 
variables in the production, then they can be concatenated to form a new token which 
matches the first n + 1 conditions of the production. Hence, each and-node contains a list 
of the inter-condition tests which insure that the token from the left memory is consistent 
with the token from the right memory. A production node is linked to the final and-node 
that represents all of the conditions of a production. Any token that filters down to a 
production node represents a full instantiation of the corresponding production. 

Whenever there is a change to working memory (either an addition or deletion of a 
wme), a token representing that change is created and sent down the network, starting 
at the root node. Any token reaching a memory node is stored in (or removed from) the 
memory before being sent on. If a token reaches an and-node, then it is matched against 
each token in the opposite memory of the and-node. If a token from the opposite memory 
is consistent with the newly-arrived token, as determined by the inter-condition tests, then 
the two tokens are combined, and the new token continues down the network. Whenever a 
token reaches a production node, an entry indicating that the token is an instantiation of 
the corresponding production is added to (or removed from) the conflict set. The processing 
that occurs at any node of the network when a single token reaches one of its inputs is called 
an activation of the node. 

4    Qlisp 

Qlisp is a parallel Lisp language proposed by Gabriel and McCarthy [3,4] based on a shared- 
memory processing model. It is an attempt to add a minimal set of high-level parallel 
constructs to Common Lisp in a consistent and useful way. The Qlisp constructs allow 
the creation of independent processes that can evaluate Lisp forms concurrently. All such 
processes have access to all data in memory. The 'CT in Qlisp comes from the fact that 
all processes are assigned to processors by a run-time scheduler from a central queue (or 



set of queues), so that Qlisp programs can run on any number of processors without being 
rewritten or recompiled. 

Goldman and Gabriel [5] describe an implementation of Qlisp on an Alliant FX/8 multi- 
processor. This implementation includes the constructs originally proposed by Gabriel and 
McCarthy, as well as a number of other primitives to aid in building parallel Lisp programs. 
Additionally, Pehoushek [11] has implemented lower-cost versions of some of the basic con- 
structs of Qlisp, which are useful in achieving better speedups in programs with finer-grain 
parallelism. Below, we describe the constructs that were most useful in this work. (For 
complete information on all Qlisp constructs, refer to Weening [12]). 

In many of the constructs, a proposition is supplied as an argument which determines 
whether the construct will execute serially or in parallel. It is intended that the programmer 
can use the proposition to limit the creation of new processes at points in a computation 
when a large number of processes already exist. 

4.1 QLET 

qlet is a version of the let construct which may execute the bindings in parallel. It has the 
form: 

(qlet prop {{var binding-form}*) {main-form}*) 

That is, the qlet construct has the same form as the let construct, except for the addition 
of the proposition. If the value of prop is nil, then the qlet behaves in exactly the same way- 
as the corresponding let, binding each variable to the value of its corresponding form, and 
then executing main-form in the environment with those new bindings. If prop evaluates 
to neither nil nor the special value eager, then a process is spawned corresponding to 
each variable, and each of the binding-forms are executed in parallel. When all of the 
processes executing the binding-forms have completed, each variable is bound to the value 
of the corresponding binding-form, and the main form is executed. Note that, in this case, 
the qlet enforces an implicit synchronization point, since the parent process must wait 
for the child processes to complete the evaluation of the binding-forms before continuing 
execution. Finally, if the value of the proposition is eager, then processes are spawned to 
evaluate each of the binding forms in parallel, but each of the variables is bound to a special 
data value known as a future, and the main form begins executing immediately. The main 
form executes in parallel with the evaluation of the binding forms, except that when, if ever, 
it references the value of one of the variables bound to a future, it waits until the process 
evaluating the "actual" value of the variable completes. 

4.2 QLAMBDA 

qlambda is a version of the lambda construct, which may cause execution of the lambda 
body in another process. It has the form: 

(qlambda prop (arg-list) body) 

qlambda creates a closure which is a critical region: only one process may be executing 
the closure at any given time. If prop evaluates to nil, then the closure is executed serially 



by the process that calls it. However, the calling process will be suspended on a. queue 
associated with the qlambda if there is already another process executing the closure. 
Hence, a qlambda may be thought of as being implemented by a. sleep lock, a type of lock 
which causes a process to be suspended (rather than just spinning) if it can not immediately 
acquire the lock. If the value of prop is not nil (and not eager), then the qlambda creates 
a separate process associated with the closure. A call to this process closure causes the 
qlambda process to begin execution of the closure with the indicated arguments, and a 
future to be returned immediately to the calling process. If the qlambda process is already 
executing another call, then any further calls are added to a queue associated with the 
process, to be executed one at a time in order. However, because futures are returned 
to the calling processes, they need not wait on the qlambda process until they actually 
require the values associated with the futures. A slightly different, but as yet unimplemented 
behavior is defined if the value of prop is eager, but we shall not describe it here. 

4.3 SPAWN 

The spawn construct has the form 

(spawn prop form) 
(spawn (prop :for-effect t) form) 

If the value of prop is nil. then spawn just evaluates form normally (in the current process). 
If the value of prop is not nil, then a process is spawned to evaluate form and a future 
representing that form is returned, so that the current process can continue executing in 
parallel with the spawned process until it "needs" the value returned by form. If the future 
representing the'spawned process is garbage-collected because there are no more references 
to it, then the spawned process will be killed, since its return value is no longer needed. If 
the form is being executed for side-effects rather than exclusively for its return value, then 
the keyword :for-effect should be supplied, in order to indicate that the process should not 
killed, even if its return value is ignored. 

4.4 QWAIT 

The qwait construct has the form 

(qwait form) 

qwait waits for all processes spawned during the evaluation of form, as well as all calls 
to qlambda process closures, to complete before returning the value of form. It is useful 
for waiting for the completion of processes which are running independently of their parent 
processes, because they were spawned "for effect" or because the futures created when they 
were spawned were never touched. 

4.5 MAKE-LOCK, GET-LOCK and RELEASE-LOCK 

The make-lock, get-lock, and release-lock constructs provide standard spin lock func- 
tionality. They provide lower-cost alternatives to the locking provided by qlambda. 



4.6    QLET&, SPAWN&, and QWAIT& 

An extension to Qlisp provides low-cost variants of qlet, spawn, and qwait, called qlet&, 
spawn&. and qwait&. These forms have much less overhead than the standard Qlisp 
constructs in creating, scheduling, and waiting for processes, but have some restrictions 
and slightly different behavior. Additionally, there is no eager version of qlet&. 

The restrictions and the different behavior of the variants result from the different way 
in which they create and represent processes. In the standard Qlisp implementation, when 
a process must be created to evaluate a particular form F. a full closure (lambda () F) 
over the form is created to represent the process. This closure can then be evaluated by the 
processor that is eventually assigned the process. However. qlet& and spawn& represent 
a process in a much cheaper way as a list which consists of a function to be called and the 
value of each of the arguments with which it is to be called. 2 Since such a representation 
cannot be used for a process which is to evaluate ä special form. qlet& and spawn& 
require that F be a function call (fn f 1 f 2 ...), where fn is a function and f 1, f2. ... 
are arbitrary forms. Specifically, all of the binding-forms of a qlet& expression must be 
function calls, and. similarly, the form within a spawnfe must be a function call. 

Additionally, this representation requires that the arguments f 1, f 2, ... to the function 
call be evaluated before the process is created, so the arguments are evaluated by the 
"parent" process (the process evaluating the qlet& or spawn&), rather than in the newly 
created "child'' process. This change in the point at which the arguments are evaluated 
could obviously greatly reduce the amount of parallelism obtained if much of the work of 
the form f is in evaluating the arguments f 1, f2 However, typically such a problem 
can be avoided by rewriting F as a a. call to an auxiliary function G that takes as arguments 
just the free variables in the forms f 1, f2, ... and does the work of evaluating the forms 
f 1, f2. ... and then calling fn on the results. 

The fact that the arguments of the form F are evaluated in the parent process rather than 
the child not only may change the degree of parallelism, but also can change the semantics 
of the form. Because the standard versions of qlet and spawn create full closures for 
processes, the child process shares with the parent process all lexical variables that it does 
not rebind locally. Thus, when it references one of these lexical variables,, the child process 
will see any changes that have been made to the variable by the parent process (or other 
child processes) up to that point. However, the processes created by qlet& and spawn& 
do not share lexical variables with the parent, since no closure is created and all of the 
arguments in the form F are pre-evaluated in the parent process. Frequently, the latter 
behavior is actually the one that is more desirable. For example, the expression: 

(dotimes  (i 100)   (spawnfe (do-task i))) 

evaluates the forms (do-task 1), (do-task 2), ..., (do-task 100) in parallel, as might 
be expected. However, if spawn& is replaced by spawn, then the above expression behaves 
unpredictably, because the hundred processes created all share the lexical variable i. In 
the worst case, if the parent process completes all the iterations of the loop before any of 
the child processes run, then each child process will execute (do-task 100), because i will 

2 Also included in the representation of a process is a pointer to the special variable environment in which 
the process is created. 



have the value 100 when they finally run.  For the processes to behave as intended, each 
must be given a private copy of the index variable i. as follows: 

(dotimes  (i 100) 
(let  ((il i))   (spawn (do-task il)))) 

5    Parallelism in the Rete Algorithm 

Gupta [6] describes several types of parallelism that might be exploited in speeding up the 
conflict resolution and action phases of a rule system. However, as might be expected, 
the time spent in the matching phase usually greatly dominates the processing time of a 
production system. Hence, in this work, we only investigate parallelizing the match phase 
of a production system. In this section, we describe several levels of parallelism in the 
Rete algorithm, give some examples of how the Qlisp constructs can be used to parallelize 
the algorithm, and then summarize some of the interesting aspects of the parallel Rete 
algorithm. 

5.1    Levels of Parallelism in the Rete Algorithm 

As described above, in the Rete algorithm, each change to working memory causes a flow of 
tokens throughout the Rete network, representing changes in partial matches of productions 
caused by that particular change to working memory. At some of the nodes 'of the network, 
there will be much activity, as many tokens are generated and sent on due to a single change 
to working memory, whereas at other nodes there will be no work, because no new tokens 
reach them. As identified by Gupta [6], there are several levels of potential parallelism in 
this filtering process of the Rete algorithm. These are: 

• rule-level parallelism - doing the work for the parts of the network representing dif- 
ferent rules in parallel. 

• node-level parallelism - doing the work at the individual and-nodes in parallel. 

• intra-node parallelism - doing the work of each activation of each and-node in parallel. 

The types of parallelism above are listed in order of decreasing task granularity. As usual, 
there is a tradeoff between the greater possible parallelism achievable with smaller task 
granularity vs. the increased scheduling overhead and contention. 

Additionally, we can introduce further parallelism into each of these schemes via change 
or action parallelism, in which the filtering process is done for many changes to working 
memory in parallel. All of the changes resulting from the firing of a production in the 
execution phase of one cycle can be processed in parallel during the match phase of the 
next cycle. We can expose even more parallelism if we allow the action and match phases 
to overlap somewhat, by beginning the filtering process for a change to working memory 
as soon as the change is generated by an action. The only requirement for correctness (as 
with all types of parallelism mentioned so far) is that, on each cycle, all processes involved 
in the matching phase complete before the succeeding conflict resolution phase commences. 



5.2    Details of Parallelizing the Rete Algorithm in Qlisp 

We have implemented and investigated all three levels of parallelism described above, both 
alone and in conjunction with change parallelism. Below, we give some details and some 
specific examples of parallelizing the Rete algorithm in Qlisp. For full details on imple- 
menting intra-node parallelism, the level which gives the best speedup, refer to Gupta et 
al. [7]. 

The basic parallelism of the algorithm comes from the structure of the network. The root 
node of the network, at which all changes to working memory start, has many outputs, one 
for each distinct condition that any change to working memory must be matched against. 
Additionally, due to the similarity of many of the conditions of different rules, many other 
nodes in the network are shared between several conditions and/or rules and so have multiple 
outputs. Parallelism is created by spawning a different process to handle the flow of a token 
to each one of the outputs of a node. In Qlisp, this procedure might be coded as: 

(defun send-to-outputs (token outputs) 

(qlet t ((x (eval-node token (car outputs))) 

(y (send-to-outputs (cdr outputs)))))) 

or 

(defun send-to-outputs  (token nodelist) 
(dolist  (node nodelist) 

(let  ((n node)) 
(spawn (t   :for-effect t)   (eval-node token n))))) 

In the first example, we have used a recursive qlet construction (with no actual body) to 
create a variable number of processes, each of which sends token to a different output. 
Depending on the Qlisp implementation, this construction might be quite inefficient, since 
it creates twice as many processes as there are outputs, with half the processes doing real 
work and half the processes (the ones that execute the qlet) merely waiting for their child 
processes to complete. 

In the second example, we have used spawn to create exactly as many processes as 
are needed. We have created the processes with the :for-effect keyword, since they are 
executed for effect and should not be garbage-collected, even though the futures they return 
are ignored, Most often, such spawns should be executed within the dynamic scope of a 
qwait call, which establishes a barrier requiring that all processes created within the qwait 
call complete before the qwait call returns. Since all of the processes spawned in the Rete 
algorithm are independent, only a single qwait call is needed "at the top". If the qwait 
is placed around the function that does the match for a single wme, then all processing 
associated with each change to working memory will be done in parallel. If, however, the 
qwait is placed around a "higher-up" function that does the match for all working memory 
changes in each cycle, then all processing in the network associated with all the working 
memory changes of a single cycle will occur in parallel, thus producing the change parallelism 
described above. 

Though fewer processes are created in the spawn construction above than in the qlet 
construction, it is still possible that the qlet expression is cheaper, if creating a process via 

10 



a (non-eager) qlet is quite a bit less expensive than creating one via spawn. This is quite 
possible, depending on the implementation, since a. spawned process must be completely 
independent (in terms of stack, control structures, etc.) of the process that created it. In 
contrast, much of the information about a process created by a (non-eager) qlet can be 
maintained by the parent process (perhaps on its stack), since the parent process must wait 
for the child process to complete. 

qlet& and spawn& exhibit just such a cost tradeoff: the parallelism created by the 
spawn& construct is more flexible than the parallelism of the qlet& construct, but creating 
a process via qlet& is significantly cheaper than creating one via spawn&. Also. qlet& 
adds the extra efficiency of having the parent process itself execute one of the binding 
forms, thus entirely avoiding the creation of any extra processes. (This is similar to the 
way that an expression like (+ (future A) (future B)) in Multilisp can be optimized 
to (+ (future A) B), given a left-to-right evaluation of arguments [8].) Because of this 
tradeoff, it is sometimes not obvious whether to use spawn& or qlet& when creating 
processes. 

Another important source of parallelism in node and intra-node parallelism occurs at the 
and-nodes. In contrast to the alpha nodes, the processing resulting from a single activation 
of an and-node can result in the output of several tokens, since the incoming token may 
cause the partial production represented by the and-node to match in several different 
ways. Hence, another source of parallelism may be exploited by processing the multiple 
tokens produced by a single activation of an and-node in parallel. The Qlisp construction 
to implement this parallelism looks something like this: 

(defun and-node-left-activation (left-token binding-tests right-memory outputs) 

(dolist  (right-token right-memory) 
(if  (bindings-match left-token right-token binding-tests) 

(spawn t 
(send-to-outputs  (concatenate left-token right-token)  outputs)))) 

Here, an activation resulting from a token coming to the left input of an and-node is handled 
by matching the incoming token with each token in the right memory, and for each match, 
spawning a process which sends the concatenation of the two matching tokens to each of 
the outputs of the and-node. Note that here there is no corresponding qlet expression 
that could achieve the same effect of conditionally spawning off independent processes at 
varying intervals during a computation. Note also that, depending on the type of locking 
done by the and-node activation (as discussed below), this implementation may result in 
deadlock if run in serial mode (in which the spawn call does not create a new process), 
since the and-node activation may hold some lock that will be required by a later and-node 
activation caused by one of the tokens that is sent out. An alternate implementation that 
does not have this deadlock problem in serial mode is to collect all the tokens to be sent 
out and release any locks being held before sending out any tokens. Obviously, however, 
such an implementation reduces the amount of parallelism. 

With all these processes filtering tokens through the network, it is, of course, a require- 
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ment to lock the shared data that may be accessed by the processes: the memories of the 
memory nodes and the conflict set. Both of these shared data structures can be '"protected" 
by encapsulating the code that manipulates them in qlambda closures. As stated above. 
qlamb da closures are critical regions which execute calls by processes serially, either within 
the calling process or in a separate process. For rule parallelism, there should be a separate 
qlambda closure for each group of memory nodes representing a single production. For 
node parallelism, there should be a separate qlambda closure for each and-node and the 
two memory nodes at its inputs. For intra-node parallelism, locking is even finer - through 
the use of a global bucket hash table to store the contents of the memory nodes - in order 
to allow several activations of a single and-node to run concurrently. In this case, there 
should be one qlambda closure per bucket of the hash table. Additionally, for all three 
levels of parallelism, there should be a single qlambda process for accessing the conflict set 
atomically. For more details on implementing the necessary locking for each level in Qlisp, 
refer to Okuno and Gupta [10]. 

Typically, in the Rete algorithm, one would most often want to use parallel qlambda 
closures, in order to allow the calling process to proceed immediately without waiting on 
a lock. However, a parallel qlambda has costs in terms of communication and context 
switching between the calling process and the process attached to the qlambda closure. If 
it expected that, most often, the wait for a lock on a shared data structure will be minimal, 
then it may be cheaper to achieve the locking required via the use of spin locks rather than 
calls to qlambda closures. 

5.3    Properties of the Parallel Rete Algorithm 

By way of a summary, we here list some of the characteristics of the Rete algorithm that 
distinguish it from many of the small, functional programs that are often used as test cases 
for parallel Lisps: 

• When run in parallel, the algorithm requires extensive use of locks at nodes in the 
network that store state information. Hence, processes may not always be able to run 
to completion once they have started (if sleep locks are used) or may spend some of 
their processing time spinning (if spin locks are used). 

• Although a correctly-implemented parallel version of the Rete algorithm will yield 
the same overall result for a particular set of working memory changes as the serial 
version, it will not necessarily process the same number of node activations, since the 
actual work done in the network depends on the order in which tokens are sent down 
the network. 

• The algorithm is highly non-functional: most functions do not return values explicitly, 
but instead modify global variables and/or information stored in the network. Hence, 
with the proper locking, most processes that are spawned can run independently, with 
just a single synchronization point at the end of the matching phase of each cycle. 

• The algorithm provides ample opportunities for parallelism, but the degree of paral- 
lelism at different points in the run and the size of the tasks created varies widely 
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and unpredictably. Because of this variability, it is necessary to spawn processes at a 
fairly fine-grained level in order to achieve a reasonable speedup. 

6    Results and Analysis 

In Table 1, we give the timings results for our best parallel implementation of the Rete 
algorithm in Qlisp, which includes a combination of intra-node and change parallelism. 
Our implementation of intra-node parallelism was clearly faster than our implementations 
of rule- and node-level parallelism, as was expected, given the smaller grain size of its 
tasks. However, because of the small size of the tasks created at the level of intra-node 
parallelism, the use of the low-cost primitives qlet& and spawn& was crucial in keeping 
the overhead low enough to get reasonable speedups. The best times resulted from the 
use of qlet& to create parallelism at the outputs of the root and alpha test nodes and the 
use of spawn& to create the parallelism at the outputs of the and-nodes. as described in 
Section 5.2. Additionally, we used spins locks throughout rather than qlambda, which is 
quite expensive and has no low-cost equivalent. At all three levels of parallelism, the use 
of change parallelism improved performance significantly. The fact that change parallelism 
is clearly beneficial at all levels probably results from the fact that the individual changes 
to working memory made during a cycle of the production system often affect different 
productions and different nodes in the network, so they can be processed in parallel with 
little contention. 

We began with the standard Common Lisp implementation of 0PS5, but, before at- 
tempting to parallelize it. made a number of changes to the lowest-level functions involved 
in matching, in order to eliminate a number of inefficiencies. We also included type decla- 
rations in some of these functions in order to speed them up further. Additionally, in all 
implementations, both serial and parallel, we used the highest level of optimization of the 
Qlisp compiler (which is based on the Lucid Common Lisp compiler). 

We also changed the implementation of the conflict set from a linked list to a hash table 
in the serial and parallel implementations. Several of the 0PS5 programs that were used 
for timings typically cause runs in which the average size of the conflict set is very large. 
Hence, to reduce the total time adding and deleting instantiations from the conflict set 
(all of which must be serialized via a lock), the conflict set was converted to a hash table. 
This change does not measurably increase or decrease the times of those runs in which the 
average conflict set size is small. 

All times are user CPU time in milliseconds and were obtained for an implementation of 
Qlisp on an eight-processor Alliant FX/8. The Affiant FX/8 is a shared-memory multipro- 
cessor in which all of the^processors are connected to a common global memory via a shared 
cache. The individual processors of the Alliant run at about three MIPS, though, some 
appear to run slightly slower when they are running in parallel mode, so the best speedup 
that can be obtained for 8 processors is about 7.8. Since the current implementation of 
Qlisp does not have a parallel garbage collector, all times are for runs in which there was 
no garbage collection. 

For the timings, we use four 0PS5 programs (rule sets) also used in [7] and [9]. They 
are: 
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program 
no. of 
rules 

no. of 
cycles 

RHS 
actions 

average 
CS size 

serial 
time 

parallel 
1 procr 

time 
8 procr 

speedup 
"true"    "nom.'' 

Rubik 70 50 1166 2 30937 38355 7138 4.33         5.37 
Weaver 637 150 469 8 12148 33431 7344 1.65         4.55 
Tourney 17 30 81 625 15675 11550 4866 3.22         2.37 
Tourney* 17 30 81 625 14263 10138 3454 4.13         2.94 
Waltz 33 535 2086 95 108977 74127 23431 4.65         3.16 
Waltz* 33 535 2086 95 103876 69026 18330 5.66         3.77 

*times excluding the serial conflict resolution phase 

Table 1: Times (in ms) for the runs of four OPS5 programs 

• Rubik, a program that models manipulations of a R.ubik's cube 

• Weaver, a VLSI routing program 

• Tourney, a program that makes schedules for a tournament 

• Waltz, a program that interprets three-dimensional line drawings 

The first column of Table 1 gives the number of rules in each program. The second and 
third columns gives the number of cycles (rule firings) and the number of actions (additions 
and deletions to working memory) in the runs timed for each program, while the fourth 
column gives the average size of the conflict set over all cycles. The fifth column gives the 
time for the run of a rule set on the optimized serial implementation of OPS5. The sixth 
and seventh columns give the times for the run on the parallel implementation of OPS5 
running on one or eight processors, respectively. For the Tourney and Waltz rule sets, 
the time for conflict resolution (which runs completely serially in our implementation) is 
such a significant part of the run time (about 1400 ms and 5100 ms respectively) that we 
include entries showing the results when the time for conflict resolution is excluded. For the 
other two rule sets, the time spent in the conflict resolution phase is basically insignificant 
(approximately 300ms and 350ms, respectively, for Rubik and Weaver). 

The "true" speedup is the ratio of the time for the serial implementation to the time 
for the parallel implementation on eight processors. The '"nominaT speedup is the ratio of 
the times of the parallel implementation on one and eight processors. The differences in the 
performance for each rule set of the serial implementation and the parallel implementation 
on one processor result mainly from two factors: 

• Changes to the network required for the parallel implementation that decrease sharing 
and so increase the number of nodes in the network. 

• Speedup in the access to tokens in the memories of memory nodes because of the use 
of hash tables in the implementation of intra-node parallelism. 

The first item is quite significant and is the principal reason why Weaver runs nearly 
three times slower under the parallel implementation on one processor than under the serial 
implementation.   The slow-down comes mainly from the fact that the implementation of 
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program 
par. 

time 

idle 

time 

spin 

time 

no. of 

qletfc 

procs. 

spawn 

average 

activ. time 
Rubik 7138 1232 279 78926 7399 0.265 
Weaver 7344 1402 480 62166 3078 0.390 
Tourney 4866 2038 1145 1075 3195 6.634 
Waltz 23431 8655 3033 87644 6949 0.954 

Table 2: Statistics for parallel runs of four- OPS5 programs 

intra-node parallelism does not allow, in most cases, the sharing of memory nodes Thus, if 
an alpha memory is shared in the serial implementation by three rules (because all three 
rules contain an identical condition), then in the parallel implementation, that memory 
node must be duplicated three times, and the work that had been done by that one node is 
duplicated at each of the two extra nodes. This effect can become huge if many conditions 
and sequences of conditions are shared among rules. Note, however, that any extra work 
created because of the loss of sharing can probably run in parallel with the original work 
with little contention, since the extra work occurs at new nodes that didn't exist in the 
serial network. Hence, the effects of loss of sharing can be mitigated somewhat by applying 
more processors to the matching, if they are available. 

The second factor is the reason that Tourney and Waltz actually ran faster on the 
parallel implementation than on the serial implementation. As mentioned above, part of the 
modifications required to implement intra-node parallelism involve changing the memories 
at the memory nodes from simple lists to hash tables - thereby changing the granularity of 
locks that must be acquired to modify the contents of a memory node from the level of the 
entire memory list to the level of a single bucket of a hash table. If. for a particular run 
of a set of rules, the number of tokens at various memory nodes becomes very large, then 
the processing of the memory nodes may be significantly faster when hash tables are used. 
Such is the case with the Tourney and Waltz programs. However, as indicated above, the 
use of hash tables at the memory nodes contributes to the loss of sharing and so does not 
always improve performance (as with the Weaver program). 

Table 2 gives further statistics on the eight-processor parallel runs of the four OPS5 
programs. The first column repeats the figures given in Table 1 for the running time on 8 
processors. The second column gives the average idle time per processor during the run. 
This figure is the time that a processor is idle because no process is available to execute; 
it does not include the time spent spinning on locks in order to access token memories or 
the conflict set, which is the value given in the third column. The fourth and fifth columns 
give the number of processes created via qlet& and spawn& respectively. The last column 
indicates the average time for the processing of an and-node activation (in milliseconds) for 
each of the programs. This last figure gives an indication of the grain-size of the processes 
created. (However, these figures do not give the whole picture, since they do not average 
in the times for the processes that handle the tests on the alpha branches.) Obviously, 
the average activation time for the Tourney program is huge; such huge times ca.use load- 
balancing problems and increase the contention for locks associated with the memories of 
the and-nodes. 

For purposes of comparison, it is interesting to note the approximate times required for 

15 



operation time 

setq. car. cdr lfiS 

get-lock 3/JS 

cons D/J.S 

function call 9 - 12/is 
creating a closure ÖÖ/JS 

creating a process via qlet& 23fjs 
transferring a process ZOfis 
suspending a process ZO/is 
creating a process via spawn& lOOfJLS 

Table 3: Times for some Qlisp operations on the Affiant FX/8 

various operations in Qlisp on the Affiant, as given in Table 3. The figure for cons does 
not include any garbage-collection overhead that may be associated with the cons. The 
last four entries describe the overheads associated with the low-cost versions of the Qlisp 
constructs. The entry "transferring a process'* gives the time involved in transferring a 
process from the processor on which it was created to another processor which is looking 
for work. The entry '"suspending a process'' is overhead involved in suspending a process 
because it must wait at a qwait& or for a sleep lock to be released or for the child processes 
of a, qlet& to complete. The overhead in creating a process via spawn& is higher than the 
overhead in creating a process via qlet&. because more information must be maintained 
and many process structures must heap-allocated in order to allow a spawned process to 
run independently of its parent process. 

We may summarize the results of the four different programs as follows: 

• Rubik gave the best nominal speedups of the four rule sets. Not only do runs of this 
rule set have a good degree of parallelism, but the parallelism that is exploited does 
not generate much contention for memory node locks. Although many of the parallel 
tasks generated by a run of this rule set are quite small, as evidenced by the figure 
of 265 microseconds in Table 2 for the average time for an activation of an and-node, 
the spawn& and qlet& constructs are cheap enough that good speedup can still be 
achieved. 

• Weaver achieves a rather poor '"true" speedup. However, the nominal speedup is 
quite good, indicating that the poor speed is due to loss of sharing, rather than lack 
of parallelism or contention on locks. Because much of the processing power of the 
eight processors is used just in making up for the loss of sharing, it is not possible to 
tell the extent of the real parallelism in the rule set without using more processors. 

• Tourney and Waltz show reasonably good "true'* speedup, which is somewhat mis- 
leading, since much of the true speedup of the Tourney and Waltz programs results 
from the change of node memories from linked lists to hash tables, rather than from 
parallelism. In terms of parallelism, what is more important is their nominal speedup, 
which is rather poor. As explained in [7], the poor performance of Tourney is due 
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to the fact that the structure of the small number of rules is such that a combina- 
torial number of partial matches to many of the rules is generated during the run. 
This causes large numbers of tokens to be stored in some of the memory nodes, and 
consequently, the average time to process memory node and and-node activations to 
become very large (as indicated by the huge figure in the '"average activation time" 
column of Table 2). The increased processing time for node activations increases lock 
contention (the uspin time") and limits the degree of parallelism. Waltz appears to 
suffer from a similar problem, though to a much lesser extent, as evidenced by the 
large average conflict set size, large average activation time for and-nodes, and the 
large spin time per processor (as a percentage of the total run time). 

7    Comments on Qlisp 

In general, we found the Qlisp parallel constructs both reasonable and useful. Their sim- 
ilarity to existing Lisp constructs made them easy to remember, and their behavior and 
interaction with other parallel constructs was fairly easy to understand. In addition, par- 
allelism was easy to add and remove in a Qlisp program, either by explicitly adding or 
removing a Qlisp construct (e.g. a spawn surrounding a particular form) or by changing 
the proposition associated with a Qlisp construct. This property of Qlisp facilitated experi- 
mentation with different kinds of parallelism. On the other hand, because the current Qlisp 
environment provides no tools to help the user in determining where to introduce paral- 
lelism in his program, the user may in fact have to do much experimentation to determine 
what combination of parallelism gives the best results. 

The very different behavior of the non-eager qlet and spawn may cause some confusion. 
Whereas spawn either uses futures for synchronization or implies no synchronization at all 
(when specified as "for effect"), a non-eager qlet synchronizes via a barrier that requires 
that all child processes be completely finished before the parent process continues. Such 
difference in behavior means that the non-eager qlet and spawn are often best used in quite 
different circumstances, even though they are both constructs for creating parallelism. 

spawn and qwait were quite useful in parallelizing the Rete algorithm, because of the 
non-functional and independent nature of the tasks created by the parallel versions of the 
algorithm, spawn was especially crucial to avoid the overhead of the many extra unneeded 
synchronization points that would result if qlet were used instead. In addition, spawn was 
useful at points in the algorithm where the number of tasks to be created was not fixed. As 
illustrated in Section 5.2 above, creating a variable number of tasks via spawn is straight- 
forward, but, if qlet is used, requires defining a recursive function. Also, if the variable 
number of tasks are created over a period of time (as in and-node-left-activation in 
Section 5.2), then a qlet is unusable unless the potential tasks are collected and spawned all 
at once (which, of course, results in a loss of some of the parallelism). The qwait construct 
made it quite convenient to use spawn freely; any less flexible construct that required the 
programmer to keep track of exactly which processes or how many processes were to be 
waited on would make spawn much less useful. 

qlambda mapped naturally to the locking needed in several parts of the algorithm, 
though spin locks were eventually used instead, because they have lower overhead. For 
completeness, it might be reasonable to add to Qlisp a version of qlambda based on spin 
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locks. 
One big problem with the current implementation is the lack of good performance moni- 

toring tools. Common Lisp itself defines no tools other than the time construct for profiling 
the execution of a serial program, and Qlisp provides no additional tools for monitoring the 
execution of parallel programs. Additionally, on the AUiant FX/8, the only time that can 
be obtained with a low enough overhead to be useful in timing operations at the level of 
node activations is wall-clock time. Given the existence of other users and system processes 
on the machine, wall-clock time is obviously not sufficient for getting highly accurate tim- 
ings. Hence, it is quite difficult to get an accurate profile of the timing characteristics of the 
parallel 0PS5 algorithm running under Qlisp and so to determine where the bottlenecks 
are. 

8 Conclusion 

We may briefly summarize some conclusions from this work as follows: 

• Qlisp is a useful extension to Common Lisp for parallelizing the expensive parts of 
computation-intensive Lisp programs. In our case, it was easy to parallelize the expen- 
sive matching phase of the 0PS5 interpreter, while leaving untouched the remaining 
code that handles the building of the Rete network and the processing required for 
other two phases of the execution cycle. 

• The basic Qlisp constructs are simple to understand, but powerful enough that it is 
easy to experiment with different kinds of parallelism. 

• qwait and spawn are especially useful for programs which are highly side-effecting 
and whose opportunities for parallelism vary greatly at runtime, both of which are 
true of the OPS5 implementation of the Rete algorithm. In contrast, Qlisp's qlet 
construct is often sufficient and more efficient than spawn in many cases in which 
parallelism is more regular. We needed spawn to express parallelism at the and- 
nodes, but qlet was adequate and cheaper for expressing parallelism at the outputs 
of the alpha test nodes 

• The standard Qlisp constructs (in the current implementation) have a fair amount of 
overhead and are intended to be used in implementing programs with medium-grained 
parallelism. However, the low-cost variants to the basic Qlisp constructs are cheap 
enough that programs with finer-grained parallelism can achieve reasonable speedups. 
This result is significant, since many of the symbolic applications for which Lisp is 
typically used have an irregular enough execution behavior that parallelism can only 
be exploited effectively at the fine-grain level. 

• In particular, using the low-cost variants, we were able to obtain moderate speedups 
for runs of the parallel Rete algorithm on several different rule sets. 

9 Future Work 

There is a variety of work that can still be done: 
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• Investigate other 0PS5 programs, in order to determine whether most programs yield 
good speedups, as with the Rubik program, or exhibit poor speedup, because of some 
of the problems described above in association with the Weaver and Tourney rule 
sets. 

• Investigate the use of dynamic spawning [11], in which the proposition associated 
with most Qlisp constructs is used to limit the number of processes being created. 
We did not use the proposition for dynamic spawning, because it was not obvious 
how to determine how much work a particular task that might be spawned as a 
separate process will entail. Some limited tests in which spawning was controlled by 
the current size of each processor's task queue either increased or did not significantly 
change overall run times. Dynamic spawning may not be particularly relevant for the 
parallelized Rete algorithm, since the amount of usable parallelism is already highly 
limited by the variability of task sizes and by contention for locks. 

• Investigate how easy it is to express in Qlisp the parallelism in the conflict resolution 
and action phases of 0PS5. 

• Investigate parallelizing other matching algorithms proposed for 0PS5, such as the 
Treat algorithm [9], in Qlisp. 
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